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In this paper we are revisits well known problem in number theory  proof of Fermat’s last theorem © with different perspective
Also we are presented for n>2, Diophantine equations K(x™ + y™) =z™ and x™ + y™ =L z" are satisfied by some positive
prime exponents of x, y, z with some sufficient values of K and L. But it is not possible to find positive integers X,y and z,
which are satisfies above equations with exactly K=1 and L=1. Clearly it proves the Fermat’s last theorem, which states that

No positive integers of X, y, z are satisfies the equation

x"+yt=2z" forn>2.
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Introduction

We know that every integer is either prime or product of
primes. Also we can verify easily above equations K(x™ +
y*)=z"and x™ + y™ =L z" are satisfied by some positive
integers x, y, z

(which are primes or product of primes with exponent power
is 1) with some sufficient values of K and L are not equal to
1 for n > 2. i.e we can verify Fermat’s last theorem by
choosing of x, y, z (exponent power is 1) to solve for K and
L. Some examples are represented in below table.

TABLE 1:

Choose Choose Choose Choose K L =

nvalue xvalue yvalue zvalue __2Z"  x"+y"
e P

3 2 3 5 3.57 0.28

3 3 4 5 1.37 0.728

3 2 5 7 2.57 0.3877

3 3 5 7 2.2565 0.4431

4 3 5 11 8.7565  0.1141

4 3 6 7 1.41152 0.7084

4 5 4 6 1.1428 0.875

Now we can solve for the values of K and L by choosing x
and y are prime exponents whose power is more than one for
proving Fermat’s Last theorem.

Working rule:

Consider the Diophantine equations K(x™ + y™) = z" and
x™ + y™ =L z™. we are worked for finding ‘z’, ’K’, ’L’ values
by choosing of x and y are prime exponents of 2,3 and 5.
Case 1: x, y is represented by Exponent of 2

Theorem 1: Let x=2P,y = 29,z =2P(1+4 2" P) K =

(1+ 2"(‘1‘1!’))71_1 are satisfies the equation K(x™ + y™)= z"
for all integer valuesof p>1,9=1,p < q,n>1.
Proof: Let x=2P,y = 21
Consider x™ + y™ = (2P)"+(2)"

X"+ y" =2mP 4 2

x"+y" =2 (1 + zn(q—P))
Now we can multiply both side with (1 + 2"@-P)""" we
obtain that
(1+ zn(q—v))"'l (" +y™) = 27(1 4 2n@»)"
(1 + zn(q-p))"_l (x"+y™) = (2p(1 + zn(q—p)))n
Without loss generality , we can assume that K=
(1+2n@ )" and z= 2P (1 + 2n@-P)
Then above equation is reduced as K(x™ + y™)=z". we can
easily verify the Proof of Fermat’s Last theorem by substitute
the values of p, g and n to solve for K value (It must be not
equal to one, for all values of p, q and n.)
Lemma 1: Without loss of generality, from above theorem
replace g = p +1,
Let x=2P,y = 2P+l z=2P(1+42"),K = (1 +2")"!
are satisfies the equation
K(x™ 4+ y™)=z" forall integar values of p>1 ,n>1.
Proof: Let x=2P,y = 2P*1
Consider x™ + y™ = (2P)"+(2P+1)n

XM + yn = Jnp + 2np+n
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xt 4yt =2 (1427
Now we can multiply both side with (1 + 2™)™~1 ,we obtain
that
(1+2M™1 (" +y™) = 2" (1 + 2"
(142" (k" +y™) = (2°(1 +2M)"
Without loss generality , we can assume that K= (1 + 2™)""!
and z=2P(1 +2™)
Then above equation is reduced as K(x™ + y™)=2z".
TABLE 2: We can verify the triplets (X, y, z) are satisfies
above equation by taking some values of p & n

np X Y= Z= K= K( x™+ z"
= 2Pt 2P(14 (1+ Y™
2P 2m) 2n)n—1
112 4 6 1 6 6
212 4 10 5 100 100
2 24 8 20 5 400 400
312 4 18 81 5832 5832
324 38 36 81 46656 46656
412 4 34 4913 1336336 1336336
52 4 8 132 11859 4007464 4007464
21 2432 2432
6 2 4 8 260 10737 3089157 3089157
41825 7600000 7600000
0 0

Clearly K=1, only for n=1. And all other cases K is more than
1. It follows that Fermat’s last theorem is verified for “ No
positive integers X, y, z are satisfies the equation x™ + y™ =
z™ for any integer n > 2.

THEOREM 2: Let x=2P ,y = 29,z =2P,[ =1+ 2P
are satisfies the equation
x™+y™"=Lz" forall integer values of p>1,q=>1,n>1.
Proof: Let x=2P,y = 24
Consider x™ + y™ = (2P)"+(2D"

XM+ y" = 2" 4 2m

x4yt =2 (14 2maP)
Without loss generality, we can assume that L=1 + 2"@=P)
and z=2P
Then above equation is reduced as x™ + y™ = L z". we can
easily verify the Proof of Fermat’s Last theorem by substitute

the values of p, g and n to solve for L value (It must be not
equal to one, for all values of p, g and n.)

Lemma 2: From above theorem, without loss of generality
replaceq=p +1
Let x=2P,y = 2P*! z=12P [ =1+ 2"are satisfies the
equation
x™+y"=Lz" forall integar values of p>1 ,n>1.
Proof: Let x=2P,y = 2P*1
Consider x™ + y™ = (2P)1+(2P*1)n
xn + yn = znp + 2np+n
x4yt =2" (14 2M)
Without loss generality, we can assume that L=1 + 2" and
z=2P
Then above equation is reduced as x™ + y™ = L z"

TABLE 3: We can verify the triplets (X, y, z) are satisfies
above equation by taking some values of p & n

n p X= Y= Z= L x"+ oy Lz"
2P 2prtt P =1
+ 2"

11 2 4 2 3 6 6

2 1 2 4 2 5 20 20

2 2 4 8 4 5 80 80

31 2 4 2 9 72 72

3 2 4 8 4 9 576 576

4 2 4 8 4 17 4352 4352

5 2 4 8 4 33 33792 33792

6 2 4 8 4 65 266240 266240

7 2 4 8 4 129 2113536 2113536

8 2 4 8 4 257 1684275 1684275
2 2

9 2 4 8 4 513 1344798 1344798
72 72

Clearly L is greater than 1. It follows that Fermat’s last
theorem is verified for “ No positive integers X, y ,z are
satisfies the equation x™ + y™ = z" for any integar n > 2.
Case 2: x, y are represented by Exponent of 3
Theorem 3: Let x=37,y = 39,z =3P(1+ 3" P) K =
(1+ 3"(‘1‘7”))11_1 are satisfies the equation K(x™ + y™)= z"
for all integer values of p>1,q> p, n>1.
Proof: Let x=3P,y = 34
Consider x™ + y™ = (3P)"+(39)"

X"+ y" =3P 4 3n

x"+y" =3 (1+3n0@P)
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Now we can multiply both side with (1 + 37@-P)""" we
obtain that
(1+ 3n(q—p))"_1 (x" +y™) = 3"P(1 4 3n@»)"

— n
(1 + 3n@-m)" Lty = (3P(1 + 3n(q—p)))
Without loss generality, we can assume that K= (1 +
3n@»)""! and z= 37(1 + 3n@-P)
Then above equation is reduced as K(x™ + y™)=z". we can
easily verify the Proof of Fermat’s Last theorem by substitute
the values of p, g and n to solve for K value (It must be not
equal to one, for all values of p, g and n.)

Lemma 3: Without Loss of generality, from above theorem
replace g = p +1,
Let x=3P,y = 3P+l z=3P(1+43"),K = (14 3")"!
are satisfies the equation
K(x™ + y™)=2z" forall integar values of p>1 ,n>1.
Proof: Let x=37,y = 3P*1
Consider x™ + y™ = (3P)1+(3P*t1)n
xn + yn = 3np + 3np+n
x™+y" =3 (1+3M)
Now we can multiply both side with (1 + 3™)™*~1 ,we obtain
that
(1 +3M" (x™+y™) = 3"(1 4 3")"
(143" (" +y™) = (37(1+3")"
Without loss generality, we can assume that K= (1 + 3™)"~1
and z=37P(1+ 3™)
Then above equation is reduced as K(x™ + y™)=2z"

TABLE 4: We can verify the triplets (X, y, z) are satisfies
above equation by taking some values of p & n

np X= Y= Z= K= K( x™+ z"
3r 3Pt 3P(1+ (1+ yM)
3m) 3nyn-
113 9 12 1 12 12
213 9 30 10 900 900
229 27 90 10 8100 8100
313 9 84 784 592704 592704
329 27 252 784 1600300 1600300
8 8
413 9 246 551 3662186 3662186
368 256 256
4 2 9 27 738 551 2966370 2966370
368 86736 86736

4 3 27 81 2214 551 2402760

368 4025616

2402760
4025616

Clearly K=1, only for n=1. And all other cases K is more than
1. It follows that Fermat’s last theorem is verified for “ No
positive integers X, y, z are satisfies the equation x™ + y™ =
z™ for any integar n > 2.
Theorem 4: Let x=37, y = 39, z=3P, [ =1+ 3"@P
are satisfies the equation
x™ 4+ y™ = Lz" forall integer values of p>1,q>p n=l.
Proof: Let x=37, y =31
Consider x™ + y™ = (3P)"+(39)"

x™ 4y =3 4 3

x™ + yn =31 (1 + 3”(‘1‘1’))
Without loss generality, we can assume that L=1 + 3™(@-P)
and z=3?
Then above equation is reduced as x™ + y™ =L z". we can
easily verify the Proof of Fermat’s Last theorem by substitute
the values of p, g and n to solve for L value (It must be not
equal to one , for all values of p, g and n.)

Lemma 4: Without loss of generality replace q = p +1,
Let x=37, y = 3P*1 z=3P, L =1+ 3" are satisfies
the equation
x™ 4+ y™ = Lz" forall integer values of p>1,n>I.
Now we can go to prove that x™ + y™ =L z" forall integer
values of p>1, n>I.
Proof: Let x=3P, y = 3P+l
Consider x™ + y™ = (3P)1+(3P*1)n

xn + yn = 371.77 + 3np+n

x"+y* =3" (143"
Without loss generality, we can assume that L=1 4+ 3™ and
z=3P
Then above equation is reduced as x™ + y™ = L z"
TABLE 5: We can verify the triplets (x ,y ,z) are satisfies
above equation by taking some values of p &n

n p X= Y= Z= L x"+y*  Lz"
3P 3ptl 3 =1
+ 3"
11 3 9 3 4 12 12
2 1 3 9 3 10 90 90
2 29 27 9 10 810 810
313 9 3 28 756 756
329 27 9 28 20412 20412
4 2 9 27 9 82 538002 538002
4 3 27 81 27 82 4357816 4357816
2 2
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4 4 81 243 81 82 3529831 3529831
122 122

51 3 9 3 244 59292 59292

5 2 9 27 9 244 1440795 1440795
6 6

5 3 27 81 27 244 3501133 3501133
308 308

6 1 3 9 3 730 532170 532170

Clearly L is greater than 1. It follows that Fermat’s last
theorem is verified for “ No positive integers X, y, z are
satisfies the equation x™ + y™ = z™ for any integar n > 2,
Case 3: X, y is represented by Exponent of 5

Theorem 5: Let x= 57,y = 59, z=5P(1+5"4P),

K =(1+5"@ )" " are satisfies the equation K(x™ +
y™M)=2z" forall integer values of p>1,q>p,n>1.
Proof: Let x=5P, y = 51
Consider x™ 4+ y™ = (5P)"+(59)"

x™ 4+ y™ =5" 4 5™

X4yt =5 (14 5MaP)
Now we can multiply both side with (1 + 57@-»)""" we
obtain that
(1+ 5n(q-p))“‘1 (" +y™) = 57 (1 4 5n@»)"
(1+5m@ )" (xn 4 yn) = (5p(1 + 5n(q—p)))n
Without loss generality, we can assume that K= (1 +
57@-»)"" and 7= 57(1 + 57P)
Then above equation is reduced as K(x™ + y™)=z". we can
easily verify the Proof of Fermat’s Last theorem by substitute
the values of p, g and n to solve for K value (It must be not
equal to one, for all values of p, g and n.)
Lemma 5: Without loss of generality replace g = p +1,
Let X= 5P,y = 5Pt z=5P(1+5"), K=+
5M)"~1 are satisfies the equation K(x™ + y™)=z" for all
integer values of p>1 ,n>1.
Proof: Let x=5P, y = 5P+l
Consider x™ + y™ = (5P)n+(5P+1)n

XM +yn =5 + 5np+n

x"+y* =5" (1+5M)
Now we can multiply both side with (1 + 5™)™~1 ,we obtain
that
A +5M"1 (x™+y™) = 5"(1 4 5")"
(145" (x" +y™) = (5P(1+5M)"
Without loss generality, we can assume that K= (1 + 5®)"~1
and z=5P(1+5")
Then above equation is reduced as K(x™ + y™)=2z"
TABLE 6: We can verify the triplets (X, y, z) are satisfies
above equation by taking some values of p & n

n p X= Y= Z= K= K( x4+ z"
5P 5Pl 5P(14 (14 y")
5m) sryn-1

1 15 25 30 1 30 30

2 1 5 25 130 26 16900 16900

2 2 25 125 650 26 422500 422500

3 15 25 630 1587 25004700 25004700
0 0

3 2 25 125 3150 1587 31255875 31255875
000 000

4 1 5 25 3130 24531 95979249 95979249

437 610000 610000

Clearly K=1, only for n=1. And all other cases K is more than
1. It follows that Fermat’s last theorem is verified for “ No
positive integers X, y, z are satisfies the equation x™ + y™ =
z™ for any integar n > 2.
Theorem 6: Let x=5P ,y = 59,z =5P,L = 1+ 5™47P) gre
satisfies the equation
x™ +y™ =L z" forall integer values of p>1,q>p,n> 1.
Proof: Let x=57,y = 59
Consider x™ + y™ = (5P)"+(59)"

x™ 4+ y™ =57 4 5M

x™+y" =5 (14 5m0@-P)
Without loss generality, we can assume that L=1 + 5™(@-P)
and z=5?
Then above equation is reduced as x™ +y™ =L z™. we can
easily verify the Proof of Fermat’s Last theorem by substitute
the values of p, g and n to solve for L value (It must be not
equal to one, for all values of p, g and n.)
Lemma 6: Without loss of generality from above theorem
replaceq=p +1
Let x=5P,y = 5P*1 z=5P [ =1+ 5"are satisfies the
equation
x™ +y™ =L z™ for all integar values of p>1 ,n>1.
Proof: Let x=5P,y = 5P*1
Consider x™ + y™ = (5P)"+(5P*1)»

xn +yn = Snp + 5np+n

x™+y®™ =5" (1+5")
Without loss generality, we can assume that L=1 + 5™ and
z=5P
Then above equation is reduced as x™ + y™ =L z"
TABLE 7: We can verify the triplets(x, y, z) are satisfies
above equation by taking some values of p &n
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n p X= Y= Z= L x™ + Lz"
5P 5Pt 5P =1 g
+5"
115 25 5 6 30 30
2 15 25 5 26 650 650
2 2 25 125 25 26 16250 16250
3 1 5 25 5 126 15750 15750
3 2 25 125 25 126 196875 196875
0 0
4 1 5 25 5 626 391250 391250

Clearly L is greater than 1. It follows that Fermat’s last
theorem is verified for “ No positive integers X, y ,z are
satisfies the equation x™ 4+ y™ = z™ for any integer n > 2.
We can continue above procedure, with representing x and y
in terms of different prime exponents of all integers and their
corresponding arithmetical operations, we observed that in
every case K and L are must be more than 1, It follows that
forn>2 , It is not possible to find three positive integers x , y,
z with K=1, L=1. In this way we can proved Fermat’s Last
theorem.

Conclusion In this paper we are presented for n>2,
Diophantine equations K(x™ + y™)=z" and x™ + y" =L z"
are satisfied by some positive prime exponents of x, y, z with
sufficient values of K and L. But it is not possible to find
positive integers x, y and z, which are satisfies above
equations with K=1 and L=1. Clearly it proves the Fermat’s
last theorem, which states that No positive integers of X, Yy, z
are satisfies the equation x™ 4+ y™ = z™ forn > 2.
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