Proof Of Fermat's Last Theorem By Choosing Two Unknowns in the Integer Solution Are Prime Exponents

Dr.k sreedevi, Dr.braou, Mr. Thiruchinarpalli Srinivas, Dr.Braou
Dept. of Mathematics, Hyderabad, Telangana, India
*Correspondence:sri.du.1980@gmail.com

In this paper we are revisits well known problem in number theory ' proof of Fermat's last theorem ' with different perspective .Also we are presented for $\mathrm{n}>2$, Diophantine equations $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ and $x^{n}+y^{n}=L z^{n}$ are satisfied by some positive prime exponents of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ with some sufficient values of K and L . But it is not possible to find positive integers x, y and z , which are satisfies above equations with exactly $\mathrm{K}=1$ and $\mathrm{L}=1$. Clearly it proves the Fermat's last theorem, which states that No positive integers of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=z^{n}$ for $\mathrm{n}>2$.
Keywords: Fermat's Last theorem, Diophantine equation, Prime Exponents.

Introduction

We know that every integer is either prime or product of primes. Also we can verify easily above equations $\mathrm{K}\left(x^{n}+\right.$ $\left.y^{n}\right)=z^{n}$ and $x^{n}+y^{n}=L z^{n}$ are satisfied by some positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$
(which are primes or product of primes with exponent power is 1) with some sufficient values of K and L are not equal to 1 for $\mathrm{n}>2$. i.e we can verify Fermat's last theorem by choosing of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (exponent power is 1) to solve for K and L. Some examples are represented in below table.

TABLE 1:

Choose	Choose	Choose	Choose	K	L
n value	x value	y value	z value	$=\frac{z^{n}}{x^{n}+y^{n}}$	$\frac{x^{n}+y^{n}}{z^{n}}$
3	2	3	5	3.57	0.28
3	3	4	5	1.37	0.728
3	2	5	7	2.57	0.3877
3	3	5	7	2.2565	0.4431
4	3	5	11	8.7565	0.1141
4	3	6	7	1.41152	0.7084
4	5	4	6	1.1428	0.875

Now we can solve for the values of K and L by choosing x and y are prime exponents whose power is more than one for proving Fermat's Last theorem.
Working rule:

Consider the Diophantine equations $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ and $x^{n}+y^{n}=L z^{n}$. we are worked for finding ' z ', ' K ', ' L ' values by choosing of x and y are prime exponents of 2,3 and 5.
Case 1: x, y is represented by Exponent of 2
Theorem 1: Let $x=2^{p}, y=2^{q}, z=2^{p}\left(1+2^{n(q-p)}\right), K=$ $\left(1+2^{n(q-p)}\right)^{n-1}$ are satisfies the equation $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q} \geq 1, p<q, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=2^{p}, y=2^{q}$
Consider $x^{n}+y^{n}=\left(2^{\mathrm{p}}\right)^{\mathrm{n}}+\left(2^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=2^{n p}+2^{n q} \\
& x^{n}+y^{n}=2^{n p}\left(1+2^{n(q-p)}\right)
\end{aligned}
$$

Now we can multiply both side with $\left(1+2^{n(q-p)}\right)^{n-1}$, we obtain that

$$
\left(1+2^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=2^{n p}\left(1+2^{n(q-p)}\right)^{n}
$$

$$
\left(1+2^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=\left(2^{p}\left(1+2^{n(q-p)}\right)\right)^{n}
$$

Without loss generality , we can assume that $\mathrm{K}=$ $\left(1+2^{n(q-p)}\right)^{n-1}$ and $\mathrm{z}=2^{p}\left(1+2^{n(q-p}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)
Lemma 1: Without loss of generality, from above theorem replace $\mathrm{q}=\mathrm{p}+1$,
Let $\quad \mathrm{x}=2^{p}, y=2^{p+1}, z=2^{p}\left(1+2^{n}\right), K=\left(1+2^{n}\right)^{n-1}$ are satisfies the equation
$\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ for all integar values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=2^{p}, y=2^{p+1}$
Consider $x^{n}+y^{n}=\left(2^{\mathrm{p}}\right)^{\mathrm{n}}+\left(2^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
x^{n}+y^{n}=2^{n p}+2^{n p+n}
$$

$$
x^{n}+y^{n}=2^{n p}\left(1+2^{n}\right)
$$

Now we can multiply both side with $\left(1+2^{n}\right)^{n-1}$, we obtain that
$\left(1+2^{n}\right)^{n-1}\left(x^{n}+y^{n}\right)=2^{n p}\left(1+2^{n}\right)^{n}$
$\left(1+2^{n}\right)^{n-1}\left(x^{n}+y^{n}\right)=\left(2^{p}\left(1+2^{n}\right)\right)^{n}$
Without loss generality, we can assume that $K=\left(1+2^{n}\right)^{n-1}$ and $\mathrm{z}=2^{p}\left(1+2^{n}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$.
TABLE 2: We can verify the triplets ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) are satisfies above equation by taking some values of $p \& n$

n	p	X	$\mathrm{Y}=$	$\mathrm{Z}=$	$\mathrm{K}=$	$\mathrm{K}\left(x^{n}+\right.$	z^{n}
		$=$	2^{p+1}	$2^{p}(1+(1+$	$\left.y^{n}\right)$		
		2^{p}		$\left.2^{n}\right)$	$\left.2^{n}\right)^{n-1}$		
1	1	2	4	6	1	6	6
2	1	2	4	10	5	100	100
2	2	4	8	20	5	400	400
3	1	2	4	18	81	5832	5832
3	2	4	8	36	81	46656	46656
4	1	2	4	34	4913	1336336	1336336
5	2	4	8	132	11859	4007464	4007464
					21	2432	2432
6	2	4	8	260	10737	3089157	3089157
					41825	7600000	7600000

$\overline{\text { Clearly } K=1 \text {, only for } \mathrm{n}=1 \text {. And all other cases } \mathrm{K} \text { is more than }}$ 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=$ z^{n} for any integer $n>2$.

THEOREM 2: Let $\mathrm{x}=2^{p}, y=2^{q}, z=2^{p}, L=1+2^{n(q-p)}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=2^{p}, y=2^{q}$
Consider $x^{n}+y^{n}=\left(2^{p}\right)^{\mathrm{n}}+\left(2^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=2^{n p}+2^{n q} \\
& x^{n}+y^{n}=2^{n p}\left(1+2^{n(q-p)}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+2^{n(q-p)}$ and $\mathrm{z}=2^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute
the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n.)

Lemma 2: From above theorem, without loss of generality replace $\mathrm{q}=\mathrm{p}+1$
Let $\mathrm{x}=2^{p}, y=2^{p+1}, z=2^{p}, L=1+2^{n}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integar values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $x=2^{p}, y=2^{p+1}$
Consider $x^{n}+y^{n}=\left(2^{\mathrm{p}}\right)^{\mathrm{n}}+\left(2^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=2^{n p}+2^{n p+n} \\
& x^{n}+y^{n}=2^{n p}\left(1+2^{n}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+2^{n}$ and $\mathrm{z}=2^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$
TABLE 3: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of $\mathrm{p} \& \mathrm{n}$

n	p	$\mathrm{X}=$	$\mathrm{Y}=$			$x^{n}+y^{n}$	Lz ${ }^{n}$
		2^{p}	2^{p+1}	2^{p}	$=1$		
					$+2^{n}$		
1	1	2	4	2	3	6	6
2	1	2	4	2	5	20	20
2	2	4	8	4	5	80	80
3	1	2	4	2	9	72	72
3	2	4	8	4	9	576	576
4	2	4	8	4	17	4352	4352
5	2	4	8	4	33	33792	33792
6	2	4	8	4	65	266240	266240
7	2	4	8	4	129	2113536	2113536
8	2	4	8	4	257	1684275	1684275
						2	2
9	2	4	8	4	513	1344798	1344798
						72	72

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=z^{n}$ for any integar $\mathrm{n}>2$.
Case 2: x, y are represented by Exponent of 3
Theorem 3: Let $\mathrm{x}=3^{p}, y=3^{q}, z=3^{p}\left(1+3^{n(q-p)}\right), K=$ $\left(1+3^{n(q-p)}\right)^{n-1}$ are satisfies the equation $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q}>p, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=3^{p}, y=3^{q}$
Consider $x^{n}+y^{n}=\left(3^{\mathrm{p}}\right)^{\mathrm{n}}+\left(3^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=3^{n p}+3^{n q} \\
& x^{n}+y^{n}=3^{n p}\left(1+3^{n(q-p)}\right)
\end{aligned}
$$

Now we can multiply both side with $\left(1+3^{n(q-p)}\right)^{n-1}$,we obtain that

$$
\begin{aligned}
& \left(1+3^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=3^{n p}\left(1+3^{n(q-p)}\right)^{n} \\
& \left(1+3^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=\left(3^{p}\left(1+3^{n(q-p)}\right)\right)^{n}
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{K}=(1+$ $\left.3^{n(q-p)}\right)^{n-1}$ and $\mathrm{z}=3^{p}\left(1+3^{n(q-p)}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)

Lemma 3: Without Loss of generality, from above theorem replace $\mathrm{q}=\mathrm{p}+1$,
Let $\quad \mathrm{x}=3^{p}, y=3^{p+1}, z=3^{p}\left(1+3^{n}\right), K=\left(1+3^{n}\right)^{n-1}$ are satisfies the equation
$\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ for all integar values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=3^{p}, y=3^{p+1}$
Consider $x^{n}+y^{n}=\left(3^{\mathrm{p}}\right)^{\mathrm{n}}+\left(3^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
x^{n}+y^{n}=3^{n p}+3^{n p+n}
$$

$$
x^{n}+y^{n}=3^{n p}\left(1+3^{n}\right)
$$

Now we can multiply both side with $\left(1+3^{n}\right)^{n-1}$, we obtain that

$$
\begin{gathered}
\left(1+3^{n}\right)^{n-1}\left(x^{n}+y^{n}\right)=3^{n p}\left(1+3^{n}\right)^{n} \\
\left(1+3^{n}\right)^{n-1}\left(x^{n}+y^{n}\right)=\left(3^{p}\left(1+3^{n}\right)\right)^{n}
\end{gathered}
$$

Without loss generality, we can assume that $K=\left(1+3^{n}\right)^{n-1}$ and $\mathrm{z}=3^{p}\left(1+3^{n}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$
TABLE 4: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of $p \& n$

	p		$\mathrm{Y}=$	$\mathrm{Z}=$	$\mathrm{K}=$	$\mathrm{K}\left(x^{n}+\right.$	z^{n}
		3^{p}	3^{p+1}	$\begin{aligned} & 3^{p}(1+(1+ \\ & \left.\left.3^{n}\right) \quad 3^{n}\right)^{n-} \end{aligned}$		y^{n})	
1	1	3	9	12	1	12	12
2	1	3	9	30	10	900	900
2	2	9	27	90	10	8100	8100
3	1	3	9	84	784	592704	592704
3	2	9	27	252	784	1600300	1600300
						8	8
4	1	3	9	246	551	3662186	3662186
					368	256	256
4	2	9	27	738	551	2966370	2966370
					368	86736	86736

4	3	27	81	2214	551	2402760	2402760
				368	4025616	4025616	

Clearly K=1, only for $\mathrm{n}=1$. And all other cases K is more than 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=$ z^{n} for any integar $\mathrm{n}>2$.
Theorem 4: Let $\mathrm{x}=3^{p}, y=3^{q}, z=3^{p}, L=1+3^{n(q-p)}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q}>p, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=3^{p}, y=3^{q}$
Consider $x^{n}+y^{n}=\left(3^{p}\right)^{\mathrm{n}}+\left(3^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=3^{n p}+3^{n q} \\
& x^{n}+y^{n}=3^{n p}\left(1+3^{n(q-p)}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+3^{n(q-p)}$ and $\mathrm{z}=3^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n .)

Lemma 4: Without loss of generality replace $\mathrm{q}=\mathrm{p}+1$,
Let $\mathrm{x}=3^{p}, y=3^{p+1}, z=3^{p}, L=1+3^{n}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Now we can go to prove that $x^{n}+y^{n}=L z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=3^{p}, y=3^{p+1}$
Consider $x^{n}+y^{n}=\left(3^{p}\right)^{\mathrm{n}}+\left(3^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=3^{n p}+3^{n p+n} \\
& x^{n}+y^{n}=3^{n p}\left(1+3^{n}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+3^{n}$ and $\mathrm{z}=3^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$
TABLE 5: We can verify the triplets ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) are satisfies above equation by taking some values of $\mathrm{p} \& \mathrm{n}$

4	4	81	243	81	82	3529831	3529831
						122	122
5	1	3	9	3	244	59292	59292
5	2	9	27	9	244	1440795	1440795
						6	6
5	3	27	81	27	244	3501133	3501133
						308	308
6	1	3	9	3	730	532170	532170

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=z^{n}$ for any integar $\mathrm{n}>2$.
Case 3: x, y is represented by Exponent of 5
Theorem 5: Let $\mathrm{x}=5^{p}, y=5^{q}, z=5^{p}\left(1+5^{n(q-p)}\right)$, $K=\left(1+5^{n(q-p)}\right)^{n-1}$ are satisfies the equation $\mathrm{K}\left(x^{n}+\right.$ $\left.y^{n}\right)=z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q}>\mathrm{p}, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=5^{p}, y=5^{q}$
Consider $x^{n}+y^{n}=\left(5^{\mathrm{p}}\right)^{\mathrm{n}}+\left(5^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=5^{n p}+5^{n q} \\
& x^{n}+y^{n}=5^{n p}\left(1+5^{n(q-p)}\right)
\end{aligned}
$$

Now we can multiply both side with $\left(1+5^{n(q-p)}\right)^{n-1}$, we obtain that

$$
\left(1+5^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=5^{n p}\left(1+5^{n(q-p)}\right)^{n}
$$

$\left(1+5^{n(q-p)}\right)^{n-1}\left(x^{n}+y^{n}\right)=\left(5^{p}\left(1+5^{n(q-p)}\right)\right)^{n}$
Without loss generality, we can assume that $\mathrm{K}=(1+$ $\left.5^{n(q-p)}\right)^{n-1}$ and $\mathrm{z}=5^{p}\left(1+5^{n(q-p)}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)
Lemma 5: Without loss of generality replace $q=p+1$,
Let $\mathrm{x}=5^{p}, y=5^{p+1}, z=5^{p}\left(1+5^{n}\right), K=(1+$ $\left.5^{n}\right)^{n-1}$ are satisfies the equation $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=5^{p}, y=5^{p+1}$
Consider $x^{n}+y^{n}=\left(5^{\mathrm{p}}\right)^{\mathrm{n}}+\left(5^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=5^{n p}+5^{n p+n} \\
& x^{n}+y^{n}=5^{n p}\left(1+5^{n}\right)
\end{aligned}
$$

Now we can multiply both side with $\left(1+5^{n}\right)^{n-1}$, we obtain that

$$
\begin{aligned}
& \left(1+5^{n}\right)^{n-1}\left(x^{n}+y^{n}\right)=5^{n p}\left(1+5^{n}\right)^{n} \\
& \left(1+5^{n}\right)^{n-1} \quad\left(x^{n}+y^{n}\right)=\left(5^{p}\left(1+5^{n}\right)\right)^{n}
\end{aligned}
$$

Without loss generality, we can assume that $K=\left(1+5^{n}\right)^{n-1}$ and $\mathrm{z}=5^{p}\left(1+5^{n}\right)$
Then above equation is reduced as $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$
TABLE 6: We can verify the triplets ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) are satisfies above equation by taking some values of $\mathrm{p} \& \mathrm{n}$

n	p	$\mathrm{X}=$	$\mathrm{Y}=$	$\mathrm{Z}=$	$\mathrm{K}=$	$\mathrm{K}\left(x^{n}+\right.$	z^{n}
		5^{p}	5^{p+1}	$5^{p}(1+$	$(1+$	$\left.y^{n}\right)$	
1	1	5		$\left.5^{n}\right)$	$\left.5^{n}\right)^{n-1}$		
2	1	5	25	130	1	30	16900
2	2	25	125	650	26	422500	46900
3	1	5	25	630	1587	25004700	25004700
						0	0
3	2	25	125	3150	1587	31255875	31255875
						000	000
4	1	5	25	3130	24531	95979249	95979249
					437	610000	610000

Clearly $\mathrm{K}=1$, only for $\mathrm{n}=1$. And all other cases K is more than 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=$ z^{n} for any integar $\mathrm{n}>2$.
Theorem 6: Let $\mathrm{x}=5^{p}, y=5^{q}, z=5^{p}, L=1+5^{n(q-p)}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integer values of $\mathrm{p} \geq 1, \mathrm{q}>\mathrm{p}, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=5^{p}, y=5^{q}$
Consider $x^{n}+y^{n}=\left(5^{p}\right)^{\mathrm{n}}+\left(5^{\mathrm{q}}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=5^{n p}+5^{n q} \\
& x^{n}+y^{n}=5^{n p}\left(1+5^{n(q-p)}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+5^{n(q-p)}$ and $\mathrm{z}=5^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n.)
Lemma 6: Without loss of generality from above theorem replace $\mathrm{q}=\mathrm{p}+1$
Let $\mathrm{x}=5^{p}, y=5^{p+1}, z=5^{p}, L=1+5^{n}$ are satisfies the equation
$x^{n}+y^{n}=L z^{n}$ for all integar values of $\mathrm{p} \geq 1, \mathrm{n} \geq 1$.
Proof: Let $\mathrm{x}=5^{p}, y=5^{p+1}$
Consider $x^{n}+y^{n}=\left(5^{\mathrm{p}}\right)^{\mathrm{n}}+\left(5^{\mathrm{p}+1}\right)^{\mathrm{n}}$

$$
\begin{aligned}
& x^{n}+y^{n}=5^{n p}+5^{n p+n} \\
& x^{n}+y^{n}=5^{n p}\left(1+5^{n}\right)
\end{aligned}
$$

Without loss generality, we can assume that $\mathrm{L}=1+5^{n}$ and $\mathrm{z}=5^{p}$
Then above equation is reduced as $x^{n}+y^{n}=L z^{n}$
TABLE 7: We can verify the triplets(x, y, z) are satisfies above equation by taking some values of $p \& n$

n	p	$\mathrm{X}=$	$\mathrm{Y}=$	Z=	L	$x^{n}+$	Lz ${ }^{n}$
		5^{p}	5^{p+1}	5^{p}	$=1$	y^{n}	
					$+5^{n}$		
1	1	5	25	5	6	30	30
2	1	5	25	5	26	650	650
2	2	25	125	25	26	16250	16250
3	1	5	25	5	126	15750	15750
3	2	25	125	25	126	196875	196875
						0	0
4	1	5	25	5	626	391250	391250

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for " No positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are satisfies the equation $x^{n}+y^{n}=z^{n}$ for any integer $\mathrm{n}>2$.
We can continue above procedure, with representing x and y in terms of different prime exponents of all integers and their corresponding arithmetical operations, we observed that in every case K and L are must be more than 1, It follows that for $\mathrm{n}>2$, It is not possible to find three positive integers x, y, z with $\mathrm{K}=1, \mathrm{~L}=1$. In this way we can proved Fermat's Last theorem.
Conclusion In this paper we are presented for $\mathrm{n}>2$, Diophantine equations $\mathrm{K}\left(x^{n}+y^{n}\right)=z^{n}$ and $x^{n}+y^{n}=L z^{n}$ are satisfied by some positive prime exponents of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ with sufficient values of K and L. But it is not possible to find positive integers x, y and z , which are satisfies above equations with $\mathrm{K}=1$ and $\mathrm{L}=1$. Clearly it proves the Fermat's last theorem, which states that No positive integers of x, y, z are satisfies the equation $x^{n}+y^{n}=z^{n}$ for $\mathrm{n}>2$.

References:

[1] Fermat's Last Theorem, in Encyclopedia
[2] Fermat's Last Theorem, Wolfram Math World.
[3] Fermat's Last Theorem, Mac tutor, History of Mathematics.

