

Proof Of Fermat's Last Theorem By Choosing Two Unknowns in the Integer Solution Are Prime Exponents

Dr.k sreedevi, Dr.braou, Mr. Thiruchinarpalli Srinivas, Dr.Braou

Dept. of Mathematics, Hyderabad, Telangana, India *Correspondence:sri.du.1980@gmail.com

In this paper we are revisits well known problem in number theory 'proof of Fermat's last theorem 'with different perspective . Also we are presented for n>2, Diophantine equations $K(x^n + y^n) = z^n$ and $x^n + y^n = L z^n$ are satisfied by some positive prime exponents of x, y, z with some sufficient values of K and L. But it is not possible to find positive integers x, y and z, which are satisfies above equations with exactly K=1 and L=1. Clearly it proves the Fermat's last theorem, which states that No positive integers of x, y, z are satisfies the equation $x^n + y^n = z^n$ for n > 2. **Keywords**: Fermat's Last theorem, Diophantine equation, Prime Exponents.

Introduction

We know that every integer is either prime or product of primes. Also we can verify easily above equations $K(x^n + y^n) = z^n$ and $x^n + y^n = L z^n$ are satisfied by some positive integers x, y, z

(which are primes or product of primes with exponent power is 1) with some sufficient values of K and L are not equal to 1 for n > 2. i.e we can verify Fermat's last theorem by choosing of x, y, z (exponent power is 1) to solve for K and L. Some examples are represented in below table. TABLE 1:

Choose	Choose	Choose	Choose	K	L =
n value	x value	y value	z value	$=\frac{Z^n}{x^n+y^n}$	$\frac{x^n + y^n}{z^n}$
3	2	3	5	3.57	0.28
3	3	4	5	1.37	0.728
3	2	5	7	2.57	0.3877
3	3	5	7	2.2565	0.4431
4	3	5	11	8.7565	0.1141
4	3	6	7	1.41152	0.7084
4	5	4	6	1.1428	0.875

Now we can solve for the values of K and L by choosing x and y are prime exponents whose power is more than one for proving Fermat's Last theorem.

Working rule:

Consider the Diophantine equations $K(x^n + y^n) = z^n$ and $x^n + y^n = L z^n$. we are worked for finding 'z', 'K', 'L' values by choosing of x and y are prime exponents of 2,3 and 5. Case 1: x, y is represented by Exponent of 2 Theorem 1: Let $x=2^p$, $y = 2^q$, $z = 2^p (1 + 2^{n(q-p)})$, $K = (1 + 2^{n(q-p)})^{n-1}$ are satisfies the equation $K(x^n + y^n) = z^n$ for all integer values of $p \ge 1$, $q \ge 1$, p < q, $n \ge 1$. Proof: Let $x=2^p$, $y = 2^q$ Consider $x^n + y^n = (2^p)^n + (2^q)^n x^n + y^n = 2^{np} + 2^{nq} x^n + y^n = 2^{np} (1 + 2^{n(q-p)})$

Now we can multiply both side with $(1 + 2^{n(q-p)})^{n-1}$, we obtain that

$$(1+2^{n(q-p)})^{n-1} (x^n+y^n) = 2^{np} (1+2^{n(q-p)})^n (1+2^{n(q-p)})^{n-1} (x^n+y^n) = (2^p (1+2^{n(q-p)}))^n$$

Without loss generality, we can assume that $K = (1 + 2^{n(q-p)})^{n-1}$ and $z = 2^p (1 + 2^{n(q-p)})$

Then above equation is reduced as $K(x^n + y^n) = z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)

Lemma 1: Without loss of generality, from above theorem replace q = p + 1,

Let $x = 2^p$, $y = 2^{p+1}$, $z = 2^p(1+2^n)$, $K = (1+2^n)^{n-1}$ are satisfies the equation

 $K(x^n + y^n) = z^n$ for all integar values of $p \ge 1$, $n \ge 1$.

Proof: Let $x = 2^p, y = 2^{p+1}$

Consider
$$x^n + y^n = (2^p)^n + (2^{p+1})^n$$

 $x^n + y^n = 2^{np} + 2^{np+n}$

[[]Received 01 June 2020; Accepted 28 Oct 2020; Published (online) 31 Dec 2020]

Publisher's Note: RCLSS stays neutral regard to jurisdictional claims published maps

Attribution 4.0 International (CC BY 4.0)

 $x^n + y^n = 2^{np} (1 + 2^n)$ Now we can multiply both side with $(1 + 2^n)^{n-1}$, we obtain that

 $(1+2^n)^{n-1} (x^n + y^n) = 2^{np}(1+2^n)^n$ (1+2ⁿ)ⁿ⁻¹ (xⁿ + yⁿ) = $(2^p(1+2^n))^n$ Without loss generality, we can assume that K= $(1+2^n)^{n-1}$ and z= $2^p(1+2^n)$

Then above equation is reduced as $K(x^n + y^n) = z^n$.

TABLE 2: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of p & n

n	р	Х	Y=	Z=	K=	K(x^n +	z^n
		=	2^{p+1}	$2^p(1 +$	(1+	y^n)	
		2^p		2 ^{<i>n</i>})	$(2^n)^{n-1}$		
1	1	2	4	6	1	6	6

2	1	2	4	10	5	100	100
2	2	4	8	20	5	400	400
3	1	2	4	18	81	5832	5832
3	2	4	8	36	81	46656	46656
4	1	2	4	34	4913	1336336	1336336
5	2	4	8	132	11859	4007464	4007464
					21	2432	2432
6	2	4	8	260	10737	3089157	3089157
					41825	7600000	7600000
						0	0

Clearly K=1, only for n=1. And all other cases K is more than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y, z are satisfies the equation $x^n + y^n = z^n$ for any integer n > 2.

THEOREM 2: Let $x=2^p$, $y = 2^q$, $z = 2^p$, $L = 1 + 2^{n(q-p)}$ are satisfies the equation $x^n + y^n = L z^n$ for all integer values of $p \ge 1$, $q \ge 1$, $n \ge 1$. Proof: Let $x=2^p$, $y = 2^q$ Consider $x^n + y^n = (2^p)^n + (2^q)^n$ $x^n + y^n = 2^{np} + 2^{nq}$ $x^n + y^n = 2^{np} (1 + 2^{n(q-p)})$

Without loss generality, we can assume that $L=1+2^{n(q-p)}$ and $z=2^p$

Then above equation is reduced as $x^n + y^n = L z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n.)

Lemma 2: From above theorem, without loss of generality replace q = p + 1

Let $x=2^p$, $y = 2^{p+1}$, $z = 2^p$, $L = 1 + 2^n$ are satisfies the equation

 $x^n + y^n = L z^n$ for all integar values of $p \ge 1$, $n \ge 1$. Proof: Let $x = 2^p$, $y = 2^{p+1}$ Consider $x^n + y^n = (2^p)^n + (2^{p+1})^n$ $x^n + y^n = 2^{np} + 2^{np+n}$

 $x^n + y^n = 2^{np} (1 + 2^n)$

Without loss generality, we can assume that $L=1+2^n$ and $z=2^p$

Then above equation is reduced as $x^n + y^n = L z^n$

TABLE 3: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of p & n

n	р	X=	Y=	Z=	L	$x^n + y^n$	Lz^n
		2^p	2^{p+1}	2^p	= 1		
					+ 2 ⁿ		
1	1	2	4	2	3	6	6
2	1	2	4	2	5	20	20
2	2	4	8	4	5	80	80
3	1	2	4	2	9	72	72
3	2	4	8	4	9	576	576
4	2	4	8	4	17	4352	4352
5	2	4	8	4	33	33792	33792
6	2	4	8	4	65	266240	266240
7	2	4	8	4	129	2113536	2113536
8	2	4	8	4	257	1684275	1684275
						2	2
9	2	4	8	4	513	1344798	1344798
						72	72

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y, z are satisfies the equation $x^n + y^n = z^n$ for any integar n > 2. Case 2: x, y are represented by Exponent of 3 Theorem 3: Let $x=3^p$, $y = 3^q$, $z = 3^p (1 + 3^{n(q-p)})$, $K = (1 + 3^{n(q-p)})^{n-1}$ are satisfies the equation $K(x^n + y^n) = z^n$ for all integer values of $p \ge 1$, q > p, $n \ge 1$. Proof: Let $x=3^p$, $y = 3^q$ Consider $x^n + y^n = (3^p)^n + (3^q)^n$ $x^n + y^n = 3^{np} + 3^{nq}$ $x^n + y^n = 3^{np} (1 + 3^{n(q-p)})$ Now we can multiply both side with $(1 + 3^{n(q-p)})^{n-1}$, we obtain that

$$(1+3^{n(q-p)})^{n-1} (x^n+y^n) = 3^{np} (1+3^{n(q-p)})^n (1+3^{n(q-p)})^{n-1} (x^n+y^n) = (3^p (1+3^{n(q-p)}))^n$$

Without loss generality, we can assume that $K = (1 + 3^{n(q-p)})^{n-1}$ and $z = 3^p (1 + 3^{n(q-p)})$

Then above equation is reduced as $K(x^n + y^n) = z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)

Lemma 3: Without Loss of generality, from above theorem replace q = p + 1,

Let $x=3^{p}$, $y = 3^{p+1}$, $z = 3^{p}(1+3^{n})$, $K = (1+3^{n})^{n-1}$ are satisfies the equation

 $K(x^n + y^n) = z^n$ for all integar values of $p \ge 1$, $n \ge 1$.

Proof: Let $x=3^{p}, y = 3^{p+1}$ Consider $x^{n} + y^{n} = (3^{p})^{n} + (3^{p+1})^{n}$ $x^{n} + y^{n} = 3^{np} + 3^{np+n}$ $x^{n} + y^{n} = 3^{np} (1 + 3^{n})$

Now we can multiply both side with $(1 + 3^n)^{n-1}$, we obtain that

 $(1+3^n)^{n-1} (x^n + y^n) = 3^{np}(1+3^n)^n$ $(1+3^n)^{n-1} (x^n + y^n) = (3^p(1+3^n))^n$ Without loss generality, we can assume that $K = (1+3^n)^{n-1}$ and $z = 3^p(1+3^n)$

Then above equation is reduced as $K(x^n + y^n) = z^n$

TABLE 4: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of p & n

n	р	X=	Y=	Z=	K=	K(x^n +	z^n
		3^p	3^{p+1}	$3^{p}(1 +$	(1+	y^n)	
				3 ⁿ)	$(3^{n})^{n-}$		
1	1	3	9	12	1	12	12
2	1	3	9	30	10	900	900
2	2	9	27	90	10	8100	8100
3	1	3	9	84	784	592704	592704
3	2	9	27	252	784	1600300	1600300
						8	8
4	1	3	9	246	551	3662186	3662186
					368	256	256
4	2	9	27	738	551	2966370	2966370
					368	86736	86736

4	3	27	81	2214	551	2402760	2402760
					368	4025616	4025616

Clearly K=1, only for n=1. And all other cases K is more than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y, z are satisfies the equation $x^n + y^n = z^n$ for any integar n > 2.

Theorem 4: Let $x=3^p$, $y = 3^q$, $z = 3^p$, $L = 1 + 3^{n(q-p)}$ are satisfies the equation

 $x^n + y^n = L z^n$ for all integer values of $p \ge 1$, q > p, $n \ge 1$. Proof: Let $x = 3^p$, $y = 3^q$

Consider $x^{n} + y^{n} = (3^{p})^{n} + (3^{q})^{n}$

 $x^n + y^n = 3^{np} + 3^{nq}$

$$x^n + y^n = 3^{np} \left(1 + 3^{n(q-p)} \right)$$

Without loss generality, we can assume that $L=1 + 3^{n(q-p)}$ and $z=3^p$

Then above equation is reduced as $x^n + y^n = L z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n.)

Lemma 4: Without loss of generality replace q = p + 1, Let $x=3^p$, $y = 3^{p+1}$, $z = 3^p$, $L = 1 + 3^n$ are satisfies the equation

 $x^n + y^n = L z^n$ for all integer values of $p \ge 1$, $n \ge 1$. Now we can go to prove that $x^n + y^n = L z^n$ for all integer values of $p \ge 1$, $n \ge 1$.

Proof: Let $x=3^p$, $y=3^{p+1}$

Consider $x^n + y^n = (3^p)^n + (3^{p+1})^n$ $x^n + y^n = 3^{np} + 3^{np+n}$

$$x^{n} + y^{n} = 3^{np} + 3^{np+n}$$
$$x^{n} + y^{n} = 3^{np} (1 + 3^{n})$$

Without loss generality, we can assume that $L=1+3^n$ and $z=3^p$

Then above equation is reduced as $x^n + y^n = L z^n$

TABLE 5: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of p & n

		1		0			
n	р	X=	Y=	Z=	L	$x^n + y^n$	Lz^n
		3^p	3^{p+1}	3^p	= 1		
					+ 3 ⁿ		
1	1	3	9	3	4	12	12
2	1	3	9	3	10	90	90
2	2	9	27	9	10	810	810
3	1	3	9	3	28	756	756
3	2	9	27	9	28	20412	20412
4	2	9	27	9	82	538002	538002
4	3	27	81	27	82	4357816	4357816
						2	2

Proof Of Fermat's Last Theorem By Choosing Two Unknowns in the Integer Solution Are Prime Exponents

4	4	81	243	81	82	3529831	3529831
						122	122
5	1	3	9	3	244	59292	59292
5	2	9	27	9	244	1440795	1440795
						6	6
5	3	27	81	27	244	3501133	3501133
						308	308
6	1	3	9	3	730	532170	532170

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y, z are satisfies the equation $x^n + y^n = z^n$ for any integar n > 2. Case 3: x, y is represented by Exponent of 5 Theorem 5: Let $x = 5^p$, $y = 5^q$, $z = 5^p (1 + 5^{n(q-p)})$, $K = (1 + 5^{n(q-p)})^{n-1}$ are satisfies the equation $K(x^n + y^n) = z^n$ for all integer values of $p \ge 1$, q > p, $n \ge 1$. Proof: Let $x = 5^p$, $y = 5^q$ Consider $x^n + y^n = (5^p)^n + (5^q)^n$ $x^n + y^n = 5^{np} + 5^{nq}$ $x^n + y^n = 5^{np} (1 + 5^{n(q-p)})$

Now we can multiply both side with $(1 + 5^{n(q-p)})^{n-1}$, we obtain that

$$(1+5^{n(q-p)})^{n-1} (x^n+y^n) = 5^{np} (1+5^{n(q-p)})^n (1+5^{n(q-p)})^{n-1} (x^n+y^n) = (5^p (1+5^{n(q-p)}))^n$$

Without loss generality, we can assume that $K = (1 + 5^{n(q-p)})^{n-1}$ and $z = 5^p (1 + 5^{n(q-p)})$

Then above equation is reduced as $K(x^n + y^n) = z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for K value (It must be not equal to one, for all values of p, q and n.)

Lemma 5: Without loss of generality replace q = p + 1,

Let $x = 5^p$, $y = 5^{p+1}$, $z = 5^p(1+5^n)$, $K = (1 + 5^n)^{n-1}$ are satisfies the equation $K(x^n + y^n) = z^n$ for all integer values of $p \ge 1$, $n \ge 1$.

Proof: Let $x = 5^p$, $y = 5^{p+1}$

Consider $x^n + y^n = (5^p)^n + (5^{p+1})^n$

$$x^n + y^n = 5^{np} + 5^{np+n}$$

$$x^n + y^n = 5^{np} (1 + 5^n)$$

Now we can multiply both side with $(1 + 5^n)^{n-1}$, we obtain that

 $(1+5^n)^{n-1} (x^n + y^n) = 5^{np}(1+5^n)^n$

 $(1+5^n)^{n-1}$ $(x^n+y^n) = (5^p(1+5^n))^n$

Without loss generality, we can assume that $K = (1 + 5^n)^{n-1}$ and $z = 5^p (1 + 5^n)$

Then above equation is reduced as $K(x^n + y^n) = z^n$

TABLE 6: We can verify the triplets (x, y, z) are satisfies above equation by taking some values of p & n

n	р	X=	Y=	Z=	K=	$K(x^n +$	z^n
		5^p	5^{p+1}	$5^{p}(1 +$	(1+	y^n)	
				5 ⁿ)	$5^{n})^{n-1}$		
1	1	5	25	30	1	30	30
2	1	5	25	130	26	16900	16900
2	2	25	125	650	26	422500	422500
3	1	5	25	630	1587	25004700	25004700
						0	0
3	2	25	125	3150	1587	31255875	31255875
						000	000
4	1	5	25	3130	24531	95979249	95979249
					437	610000	610000

Clearly K=1, only for n=1. And all other cases K is more than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y, z are satisfies the equation $x^n + y^n = z^n$ for any integar n > 2.

Theorem 6: Let $x=5^p$, $y = 5^q$, $z = 5^p$, $L = 1 + 5^{n(q-p)}$ are satisfies the equation

 $x^n + y^n = L z^n$ for all integer values of $p \ge 1$, q > p, $n \ge 1$.

Proof: Let $x=5^p$, $y = 5^q$

Consider $x^n + y^n = (5^p)^n + (5^q)^n$

 $x^{n} + y^{n} = 5^{np} + 5^{nq}$ $x^{n} + y^{n} = 5^{np} \left(1 + 5^{n(q-p)}\right)$

Without loss generality, we can assume that $L=1 + 5^{n(q-p)}$ and $z=5^p$

Then above equation is reduced as $x^n + y^n = L z^n$. we can easily verify the Proof of Fermat's Last theorem by substitute the values of p, q and n to solve for L value (It must be not equal to one, for all values of p, q and n.)

Lemma 6: Without loss of generality from above theorem replace q = p + 1

Let $x=5^{p}$, $y = 5^{p+1}$, $z = 5^{p}$, $L = 1 + 5^{n}$ are satisfies the equation

 $x^n + y^n = L z^n$ for all integar values of $p \ge 1$, $n \ge 1$.

Proof: Let $x = 5^p, y = 5^{p+1}$

Consider
$$x^n + y^n = (5^p)^n + (5^{p+1})^n$$

$$x^{n} + y^{n} = 5^{np} (1 + 5^{n})$$

Without loss generality, we can assume that $L=1+5^n$ and $z=5^p$

Then above equation is reduced as $x^n + y^n = L z^n$

TABLE 7: We can verify the triplets(x, y, z) are satisfies above equation by taking some values of p & n

n	р	X=	Y=	Z=	L	$x^n +$	Lz^n
		5^p	5^{p+1}	5^p	= 1	y^n	
					+ 5 ⁿ		
1	1	5	25	5	6	30	30
2	1	5	25	5	26	650	650
2	2	25	125	25	26	16250	16250
3	1	5	25	5	126	15750	15750
3	2	25	125	25	126	196875	196875
						0	0
4	1	5	25	5	626	391250	391250

Clearly L is greater than 1. It follows that Fermat's last theorem is verified for "No positive integers x, y ,z are satisfies the equation $x^n + y^n = z^n$ for any integer n > 2. We can continue above procedure, with representing x and y in terms of different prime exponents of all integers and their corresponding arithmetical operations, we observed that in every case K and L are must be more than 1, It follows that

for n>2 , It is not possible to find three positive integers x , $y,\ z$ with K=1, L=1. In this way we can proved Fermat's Last theorem.

Conclusion In this paper we are presented for n>2, Diophantine equations $K(x^n + y^n) = z^n$ and $x^n + y^n = L z^n$ are satisfied by some positive prime exponents of x, y, z with sufficient values of K and L. But it is not possible to find positive integers x, y and z, which are satisfies above equations with K=1 and L=1. Clearly it proves the Fermat's last theorem, which states that No positive integers of x, y, z are satisfies the equation $x^n + y^n = z^n$ for n > 2.

References:

[1] Fermat's Last Theorem , in Encyclopedia

[2] Fermat's Last Theorem, Wolfram Math World.

[3] Fermat's Last Theorem, Mac tutor, History of Mathematics.