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1.Introduction 

Among humans, disease is the leading cause of death, with cancer being the second most common. Head and neck cancers 

is one of the eight most common cancers reported worldwide. In the past decade, the incidence of head and neck squamous 

cell carcinoma (HNSCC), the main pathological type of head and neck cancer, has increased significantly. The treatment 

of HNSCC is surgical resection and postoperative radiotherapy; however, its high metastasis and recurrence rates lead to a 

low survival rate. Therefore, novel treatment strategies to improve patient survival should be explored. Immunotherapy is 

an emerging treatment for cancer. Many patients with HNSCC have innate and adaptive immune deficiencies, including 

dendritic and T-cell dysfunction. Current treatment modalities, including surgery, radiotherapy, and chemotherapy, may 

exacerbate this cellular immune deficiency. Compared to other treatment methods, immunotherapy can better improve 

patients’ quality of life. Moreover, HNSCC is a high immune-infiltrating tumor; therefore, immunotherapy could yield a 

better therapeutic effect 1. 

 As an essential trace element in the human body, copper is maintained at a certain concentration under normal physiologic 

conditions and plays an important role in many biochemical reactions, including redox processes and hemoglobin synthesis. 

However, copper is an environmental pollutant. With industrial development, industrial mining and smelting, metal 

processing, machinery manufacturing, steel production, etc., have significantly polluted the environment. Moreover, copper 

pollution in rivers has been reported worldwide. Excessive copper entering the human body can disturb its metabolism and 

damage heart, liver, and kidney functions 2. Elevated copper has also been found in cancer tissues. The relationship between 

copper and tumorigenesis remains controversial. Elevated copper has been found to influence the formation and growth of 

malignancies. Significant changes in copper levels have been found in cancer tissue and serum of patients with cancer, 

including oral, lung, thyroid, and gastric cancers 3. In contrast, high copper concentrations have also been found to cause 

the death of cancer cells. The underlying mechanism is called cuproptosis. Cuproptosis in cells mainly involves 10 genes: 

FXD1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A. 

In recent years, long non-coding RNA (lncRNA), as a kind of non-codingRNA with a length of more than 200 nucleotides, 

has been gradually recognized to have a broad application prospect in oncology with the in-depth study of its structure, 

 

[Received 11 October 2024; Accepted 16 December 2024; Published (online) 20, December 2024] 

 Attribution 4.0 International (CC BY 4.0) 

Pacific International Journal, Vol. 7(6); 2024  
ISSN (Print) 2663-8991, ISSN (Online) 2616-48251 

DOI: 10.55014/pij.v7i6.731 

https://rclss.com/index.php/pij 

 Head and Neck Squamous Cell Carcinoma: Cuproptosis-related Long Non-coding 

RNAs Predict Prognosis and Immunotherapeutic Response 
 

Tao Liang1、Yuanzhi Zhu1、Yi Huang1、Yao Ding1、Shizi Wang1、Xiaoqiang Mo1* 

1  Youjiang Medical University for Nationalities, No. 98 Countryside Road, BaiseGuangxi 533000, 

China 

* Corresponding author:  Xiaoqiang Mo   E-mail: 29109799@qq.com 
Abstract: Objective Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis because of high recurrence and 

metastasis rates and failure of immunotherapy caused by escape of immune cells. The aim of this study was to explore potential 

biomarkers and precise drug therapies for HNSCC.  

Methods We extracted the RNA transcriptome dataset and related clinical data of patients with HNSCC from The Cancer 

Genome Atlas (TCGA) database to analyze differentially expressed long non-coding RNAs (lncRNAs) in HNSCC. We 

screened differentially expressed lncRNAs related to cuproptosis among regulatory genes and identified those that best 

indicated the prognosis of HNSCC univariate Cox (uni-Cox) regression analyses and the least absolute shrinkage and selection 

operator. We constructed models and evaluated their accuracy in determining high- and low-risk groups using the Kaplan–

Meier, receiver operating characteristic curve, and uni-Cox regression and multivariate Cox (multi-Cox) regression analyses. 

Subsequently, we subjected the high-risk group to gene set variation analysis, principal component analysis, immunoassay, and 

half-maximal inhibitory concentration prediction. To further improve tumor immunotherapy, we divided the entire sample into 

cold and hot groups based on cuproptosis-related lncRNAs and analyzed the therapeutic differences. Results Combined with 

cuproptosis-related genes and by analyzing the HNSCC data from TCGA, we obtained five cuproptosis-related prognostic 

lncRNAs. The model showed certain reliability. Patients in the high- and low-risk groups had different tumor 

microenvironments and drug sensitivities. Cuproptosis-related lncRNA expression differed between cold and hot tumors. 

Further, hot tumors were more sensitive to immunotherapy drugs compared to cold tumors.  

Conclusion This study established and verified the lncRNAs that stratified the prognostic risk related to cuproptosis in 

HNSCC. The model also predicted immunotherapeutic responses of patients with HNSCC and provided a reference for the 

individualized treatment of cold and hot tumors. 
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distribution, and physiological function. It has become a rigorously studied topic in molecular biology. Aberrantly 

expressed lncRNAs have been detected in various types of cancers, some exhibiting oncogenic or tumor-suppressive effects, 

suggesting their potential as biomarkers and therapeutic targets of tumors 4,5. Furthermore, lncRNA influences cancer cell 

proliferation, apoptosis, invasion, and metastasis. In HNSCC, it can also affect tumor occurrence and development by 

regulating tumor-promoting or tumor-suppressor genes. In addition, it can regulate gene expression and affect cancer 

prognosis and chemotherapy resistance 6. It can also promote tumor inflammation and help tumors escape immune 

destruction 7. Immunotherapy, an emerging treatment for HNSCC, involves immune checkpoint inhibitors. Existing 

immunotherapies have limitations, such as the toxicity of immunotherapy drugs and the lack of immunotherapeutic 

responses. Tumors that do not respond to immunotherapy are called “cold” tumors. Their center and margin areas are 

almost devoid of immune cells. In contrast, “hot” tumors have a high density of immune cells and are sensitive to immune 

checkpoint inhibitors 8. To date, there has been no study on cuproptosis-related lncRNAs as potential therapeutic targets 

for HNSCC. Therefore, gaining more knowledge of cuproptosis-related lncRNAs can not only help us to understand more 

clearly the roles of cuproptosis and LncRNAs in immunotherapy, but also help us to reconstitute patients according to 

cuproptosis-related lncRNAs to differentiate between cold and hot tumors, and further explore differences in 

immunotherapies that can be precisely regulated during treatment. 

 

2. Meterials and Methods 

2.1 Data sources 

RNA sequencing and clinical data of patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA) 

website (http://www.tcga.org). We extracted 502 HNSCC and 44 normal tissue samples. Clinical data comprised sex, age, 

tumor grade, tumor pathological stage, TNM stage, survival time, and survival status. All tumor samples were of solid 

tumors. 

2.2 Screening of cuproptosis-related to lncRNAs 

The differential expression analysis was performed on HNSCC data downloaded from TCGA database using Strawberry 

Perl and “limma” R package. Criteria for statistical significance were: false discovery rate < 0.05; |log2 fold change| > 1; 

and p < 0.05. Subsequently, based on the 10 cuproptosis-related genes reported in literature, the expression correlation 

analysis was performed, and lncRNAs related to cuproptosis gene expression were screened. 

2.3 Model construction and validation 

In TCGA database, patients with a follow-up duration < 30 days and missing overall survival (OS) were excluded. The 

overall cohort was divided into training and test groups at random. The model is constructed by training group and the 

predictive ability of the model is verified by testing group. The screen differentially expressed cuproptosis-related lncRNAs 

were analyzed for their sensitivity to predict the prognosis. The lncRNAs related to the prognosis were screened using 

univariate Cox (uni-Cox) regression. For model construction, to reduce accidental errors caused by a single division of the 

training and test groups, we performed a ten-fold cross-validation using least absolute shrinkage and selection operator 

(LASSO) regression. In the regression analysis, to prevent overfitting, which often occurs because of the poor performance 

of the validation dataset and causes bias, we ran 1,000 cycles to reduce contingency, and created a predictive model for 

cuproptosis-related lncRNAs. After successful construction, the model’s sensitivity and specificity were verified using 

“survivalROC” package of R software combined with the receiver operating characteristic (ROC) curves of 1, 2, and 3 

years. The area under the ROC curve (AUC) was calculated to evaluate the effectiveness of the model. AUCs of < 0.5, 0.51–

0.70, 0.71–0.9, and > 0.9 indicated no predictive ability, low accuracy, medium accuracy, and high accuracy, respectively. 

Calibration curves were drawn to determine the prediction accuracy. 

We choose the following formula to calculate the risk score (RS) : 

RS = ∑𝒾=1
𝓃 Coef(𝒾) × x(𝒾) 

 

Coef(𝒾) represents the regression coefficient obtained using multivariate Cox (multi-Cox) regression, and x(𝒾) represents 

the expression data of each lncRNA. Patients were divided into high- and low-risk groups according to the median risk 

score. Independent prognostic factors were screened using the chi-square test and uni-Cox and multi-Cox regression. 

Whether or not the risk score in the model was an independent prognostic factor for patients with HNSCC was verified. 

2.4 Nomogram construction and verification  

After screening the independent prognostic factors of HNSCC, including age, tumor stage, and risk score, nomograms of 

1-, 2-, and 3-year survival rates were constructed. Since the conclusion of this study depended strongly on the constructed 

model’s ability to make predictions, the Hosmer–Lemeshow test was used to verify whether or not our hypothesized model 

met the requirements before obtaining the results. 

2.5 Gene set variation analysis (GSVA) 

GSVA is a non-parametric test used to calculate the genome-specific enrichment score of each sample, reflecting the 

connections between samples and signaling pathways. It is a computational method to study microarray data at the gene set 

level. To predict changes in pathway activity and biological functions of the signaling pathways involved in the high- and 

low-risk groups, GSVA was utilized to examine the relationship between the two groups. Criteria for statistical significance 

were: false discovery rate < 0.25 and p < 0.05. 

2.6 Immune checkpoints and tumor microenvironment (TME) 

Abnormal changes in TME not only affect the prognosis of patients, but also can be used as a biomarker for immunotherapy. 

After the GSVA results were obtained, tumor immune cell infiltration data from different platforms, such as xCell, Timer, 

and quanTIseq, were used to investigate the association between TME immune cell infiltration and the high-risk group. The 
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“ggplot2” package was used to draw bubble plots. 

2.7 Genomics of drug sensitivity in cancer (GDSC) analysis 

To explore the use of models in clinical treatment, the GDSC database was developed by the Sanger Institute in the United 

Kingdom. It contains the sensitivity data and the corresponding genomic data of different drugs in tumor cell lines. Therefore, 

it has a great significance in the development of medicine. It can be used to discover potential tumor therapeutic targets or 

assess whether or not the target has more sensitive therapeutic drugs. The half-maximal inhibitory concentration (IC50), a 

frequently used parameter in drug research, is often used as an index to explore resistance and sensitivity of cancer drugs. 

It can also be used to assess drugs’ capacity to trigger apoptosis, with lower values indicating stronger inducing abilities. In 

addition, it can be used to study drug resistance of cells, indicating the degree of tolerance simultaneously. We calculated 

IC50 using the “pRRophetic” R package to explore the model’s clinical application value. 

2.8 Differentiation of hot and cold tumors and exploration of their roles 

To explore differences in patients with HNSCC according to the immunotherapeutic response, we divided them into 

subgroups by cuproptosis-related lncRNAs. With continuously increasing data generation and collection, visualizing and 

drawing inference maps become increasingly difficult. For dimensionality reduction of data, we used the principal 

component analysis (PCA) and t-distributed stochastic neighbor embedding. To verify the differences between them after 

identifying the subpopulations in HNSCC, we used the Kaplan–Meier analysis for survival comparison. In addition, we 

compared TME and drug sensitivity between the two groups. 

 

3. Results 

3.1 Cuproptosis-related genes in patients with HNSCC 

Figure 1A shows the results of the screening of the differentially expressed lncRNAs between patients with HNSCC and 

healthy controls from TCGA database. Figure 1B shows the results of the screening of the cuproptosis-related lncRNAs 

based on the 10 cuproptosis-related genes. Figure 1C shows the interaction network between the cuproptosis-related genes 

and lncRNAs. 
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Figure 1. Expression and identification of cuproptosis-related lncRNAs in patients with HNSCC. (A) Gene heat map of 

differentially expressed cuproptosis-related lncRNAs. (B) Volcanic map of differentially expressed cuproptosis-related 

lncRNAs. (C) Network diagram between cuproptosis genes and lncRNAs. 

3.2 Model construction and certification 

uni-Cox regression showed that 16 cuproptosis-related lncRNAs were associated with OS (Figure 2A, p < .05). Figure 2B 

shows the heat map. LASSO regression analysis was used to reduce the deviation of the data (Figure 2C and 2D). In HNSCC, 

15 lncRNAs associated with copper death were up-regulated, whereas one lncRNA was down-regulated (Figure 2E). The 

analysis and formula showed five copper death-related lncRNAs in HNSCC. Using the RS formula, we re-ranked the 

training and test groups and the overall cohort according to the RS obtained by each sample and plotted risk curves of the 

RS and the survival status. The abscissa of the curve was the order of patients, ascending from left to right by RS. The SR 

was the vertical axis of the curve. Figure 3A shows the plotting of the RS value on the risk curve and dividing patients into 

high- and low-risk groups based on the median value. The results of the relationship between survival time in high- and 

low-risk groups are presented in the scatter plot: Blue represents survival, and red represents death. Red dots increase from 

left to right. In the low-risk area, blue dots are clustered, whereas in the high-risk area, red dots are clustered (Figure 3B). 

Expressions of five cuproptosis-related lncRNAs in the high- and low-risk groups were also plotted, among which FAM27E3 

and MIR4435-2Hg were overexpressed in the high-risk group, while FAM27E3, AC021321.1, and AL513320.1 were 

underexpressed (Figure 3C). The Kaplan-meier analysis also showed that the survival prognosis of HNSCC patients was 

significantly different between the high and low risk groups, and the high risk group had a worse prognosis (Figure 3D, p 

< .05). Figure 3E shows the relationship between RS and tumor stage characteristics (Figure 3E). The above results fully 

indicate that the high-risk group of HNSCC patients has a worse prognosis and a higher mortality rate. 

 
Figure 2. Screening and analysis of the value of cuproptosis-related lncRNAs associated with the prognosis of HNSCC. (A) 

Univariate regression analysis of 16 cases of cuproptosis-related lncRNAs associated with overall survival. (B) Heat map 

of the gene expression of 16 prognostic cuproptosis-related lncRNAs. (C) ten-fold cross-validation for variable selection in 

the LASSO model. (D) LASSO coefficient profile of 16 cuproptosis-related lncRNAs. (E) Sankey diagram of cuproptosis-

related lncRNAs. 
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3.3 Line diagram construction and verification  

The age, tumor stage, and RS were significant independent prognostic variables in both uni-Cox and multi-Cox regression 

(Figure 4A and 4B, p < .05). Figure 4C shows the line chart created to forecast the 1-, 2-, and 3-year survival rates of patients 

with HNSCC and the calibration curve that was created. 

3.4 Assessment of risk models 

OS at 1, 2, and 3 years was the study outcome, with AUCs of 0.671, 0.618, and 0.559, respectively (Figure 4D). At the same 

time, the ROC curves of RS, age, sex, clinical grade and stage were also drawn. The results show that the AUCs were 0.671, 

0.580, 0.500, 0.544 and 0.559, respectively, indicating good predictive ability (Figure 4E). 

3.5 GSVA 

Figure 4G shows the signaling pathways regulated by the differentially expressed RNAs in the high-risk group. Most of 

them were connected to tumor incidence and growth. Owing to its central location among other signaling pathways, the 

mitogen-activated protein kinase (MAPK) signaling pathway plays a significant role in numerous signaling pathways 

involved in cell proliferation. We previously found that p38 MAPK was crucial for controlling the motility, invasion, and 

transformation of cancer stem cells, which affect tumorigenesiss 9. In the development and prognosis of tumor cells, 

immune-associated signaling pathways, such as the JAK-STAT signaling system, are closely connected. For example, JAK-

STAT signaling pathway and STAT3 and STAT5 genes are abnormally activated in HNSCC cells. Activation of the STAT3 

and STAT5 signal transduction pathways increases the expressions of downstream target genes, thereby improving cell 

proliferation, survival, angiogenesis, and immune system evasion10. 
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Figure 4. Nomogram and clinical factors of the risk model, AUC of the risk model. (A, B) univariate and multivariate Cox 

regression of clinical factors and RS with OS. (C) Nomogram with integrated RS, age, and tumor stage predicting the 

probability of the 1-, 2-, and 3-year OS. AUC of the risk model. (D) Calibration curves for 1-, 2-, and 3-year OS. (E) ROC 

curves for the 1-, 2-, and 3-year OS of the overall, training, and test sets. (F) GSVA of five prognostic cuproptosis-related 

lncRNAs in the high-risk group. 

3.6 Investigation and clinical treatment of immune factors in the high-risk group 

To explore the association between HNSCC and TME, the proportion of tumor-invasive immune cells in patients with 

HNSCC was calculated. The higher concentration of infiltrating immune cells was observed in the high-risk group, 

including activated myeloid dendritic cells, endothelial cells, mast cells, the immune score in xCell, T-cell CD4+ memory 

resting, natural killer cells in EPIC, and M2 macrophages in CIBERSORT (Figure 5A). Cellular components in TME can 

define the immunophenotype of cancer and thus affect the patient prognosis 11. In TME with higher RSs, many cytokines 

and immunosuppressive cells were linked to tumor immune evasion (Figure 5B). The high-risk group had higher 

ImmuneScore, StromalScore, and ESTIMATEScore (Figure 5C), indicating that TMEs differ between the high- and low-

risk groups. Therefore, TME should be incorporated, and immunotherapy management should be optimized. Because 

immune checkpoint expression is important for immunotherapy, we investigated the relationships between high- and low-

risk groups and immune checkpoint molecules. High- and low-risk groups showed discrepancies in immune checkpoint 

molecules (Figure 5D). This result could provide a reference for more suitable immune checkpoint inhibitors for patients 

according to RS during immunotherapy. Because immunotherapy drugs also cause adverse reactions, and the same patients 

can respond differently to the same drugs, we explored the relationship between RS and chemotherapy resistance. According 

to IC50 calculated by R package, the two groups differed in drug sensitivity. Patients in the low-risk group were significantly 

more responsive to AKT. Inhibitor.VIII, EHT.1864, and methotrexate, while those in the high-risk group were significantly 

more sensitive to gefitinib, dasatinib, and BMS.754807 (Figure 5E, p < .01). 
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Figure 5. Cuproptosis-related lncRNAs and immunotherapy. (A) Immune cell bubble of risk groups on different platforms. 

(B) Correlation between RS and immune cells. (C) Comparison of immune-related scores between the low- and high-risk 

groups. (D) Difference in the expressions of seven checkpoints between the low- and high-risk groups.(E) IC50 for 

immunotherapy agents in the low- and high-risk groups. 

3.7 Differentiation of hot and cold tumors and exploration of their roles 

Tumors can be divided into subgroups with different immune microenvironments and different immunotherapeutic 

responses 12,13. The ConensusClusterPlus R software was used to cluster patients based on five cuproptosis-related lncRNAs. 

The two separated clusters were plainly visible in the t-SNE data (Figure 6A). PCA verified that risk groups and clusters 

correlated with each other (Figure 6B). Furthermore, the “ggalluvial” R package demonstrated a substantial relationship 

between cluster 1 and the high-risk group and cluster 2 and the low-risk group (Figure 6C). The Kaplan–Meier analysis 

showed variations in survival between the two groups, with lower OS in cluster 1 (Figure 6D). In addition, we performed 

the TME analysis for both groups. Compared to cluster 2 cluster 1 had more immune cell infiltration (Figure 6E) and higher 

immune and microenvironment scores (Figure 6F). Thus, cluster 1 was of hot tumors, whereas cluster 2 was of cold tumors. 

Cold and hot tumors have different immunotherapeutic responses because of different TMEs 14. Hot tumors have more 

immune cell infiltration, making them more responsive to immunotherapy drugs. To test this conclusion, drug sensitivity 

was compared between the two groups. According to IC50, we found that cluster 1 was more sensitive to many 

immunotherapy agents (Figure 6G) 15. 

 

 

 

Figure 6(below). Differentiation and immunotherapy prediction of hot and cold tumors. (A) t-SNE of risk groups and 

clusters. (B) PCA of risk groups and clusters. (C) Sankey diagrams for risk groups and clusters. (D) Kaplan–Meier survival 

curves of OS (survival probability) in clusters.(E) Heat map of immune cells in clusters.(F) Comparison of immune-related 

scores between clusters 1 and 2.(G) Differences in IC50 among 20 immunotherapy drugs. 
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4. Discussion 

Complications of HNSCC treatment include postoperative functional disability and cosmetic defects, risk of relapse because 

of incomplete hand excision 16, and pharyngeal dysfunction, ototoxicity, neurotoxicity, and nephrotoxicity caused by 

chemotherapy. Therefore, novel therapeutic approaches are needed to improve outcomes for HNSCC patients and reduce 

the likelihood of treatment-related complications. Immunotherapy is currently providing considerable therapeutic 

advantages to many patients with cancer. The average survival rates for relapsed/metastatic HNSCC in patients undergoing 

immunotherapy and cisplatin or carboplatin, 5-fluorouracil, and cetuximab treatment were 21.9 and 10.1 months, 

respectively 17,18. However, immunotherapy has certain limitations. The efficacy of immune checkpoint inhibitors is limited 

to select patients. The anti-tumor spectrum is narrow. Further, adverse reactions can occur. These shortcomings limit the 

practical application of immunotherapy. Determination of accurate tumor markers and more targeted immunotherapy drugs 

is important. 

In immunotherapy, immune checkpoint inhibitors can release existing immune response to kill tumors. Without existing 

immune response, the effective rate of immune checkpoint inhibitors ranges from 10% to 35%. Most stage IV solid tumors 

have no or few infiltrating T lymphocytes in the primary tumor at the time of diagnosis, which may explain the response 

rate to immune checkpoint inhibitors. These patients do not respond well to immune checkpoint inhibitors, leading to 

ineffective and poor efficacy of immunotherapy. Faced with immunotherapy's limitations owing to immune checkpoint 

inhibitors' low response rate in these patients and immunotherapy's poor efficacy, we introduced the concepts of cold and 

hot tumors in this context, providing novel ideas for immunotherapy. Cold tumors can transform into hot tumors, with 

experimentally verified feasibility 8. In TCGA dataset and human tissue samples, macrophages in patients with HNSCC 

were significantly overexpressed in cancer tissues than in adjacent tissues 19. By phenotype, macrophages are divided into 

M1 and M2 types. When a macrophage is polarized to the M2 type, it can promote tumor cell invasion, metastasis, and 

epithelial-to-mesenchymal transition (EMT), and by interfering with it, the migration of tumor cells has reduced speed and 

aggressiveness. The M2 macrophage can also promote tumor immune evasion and exhaust T cells through a high surface 

expression of the programmed cell death protein 1 (PD-1) receptors PD-L1 and PD-L2. In addition, hot tumors with more 

infiltrating immune cells show more effectiveness of immunotherapy 20. We comprehensively analyzed lncRNA expression 

profiles of patients with HNSCC from TCGA database combined with cuproptosis-regulated genes and related the clinical 

information. Finally, five prognosis-related lncRNAs were extracted, and a prognostic risk model was established. Patients 

were divided into high- and low-risk groups according to RS, and accuracy and effectiveness in the high- and low-risk 

groups were verified. However, based only on RS, we are still unable to distinguish between cool and hot tumors. Reporter 

subtypes, or molecular subtypes, have been linked to tumor immunosuppression and TME 21. Immune and TME scores are 

related to tumor subtypes, which in turn lead to different prognoses and immunotherapeutic responses 14. The patients were 

divided into two groups based on the expression of cuproptosis-related lncRNAs in HNSCC 22. The results of the analysis 

supported our hypothesis that the two clusters have different immune microenvironments. Cluster 1 had more immune cell 

infiltration, such as of macrophage M2, and a higher immune score. Further, the immunotherapy drugs were stronger. 

Therefore, cluster 1 could be considered to contain hot tumors. 

MTF1 expression in HNSCC may be associated with lymph node or distant metastasis, as shown by the Sankey diagram of 

MIR4435-2HG and SLBP-DT 23. MIR4435-2HG, or LINC00978 and AK001796, is upregulated in some cancers, such as 
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colorectal, bladder, breast, stomach, hepatocellular, lung, head and neck, etc. 24-26. MIR4435-2HG overexpression in a study 

by Luo et al. 27 was linked to cisplatin resistance in colon cancer cells. HCT116.Cisplatin has clinical efficacy for various 

solid tumors, including HNSCC. MIR4435-2HG overexpression may cause failure to achieve good results in clinical 

treatment with cisplatin. Knocking-down the MIR4435-2HG expression in liver cancer cells significantly decreases the 

proliferation of liver cells. Knocking-down MIR44353HG expression inhibited bladder cancer cell proliferation and 

migration, whereas MIR44353HG overexpression promoted bladder cancer cell proliferation and migration 28. In colorectal 

cancer, MIR4435-2HG participates in tumor cell proliferation and metastasis by regulating the miR-206/YAP1 axis and 

silencing MIR4435-2HG in cancer cells. The proliferative capacity of colorectal cancer cells was significantly 

downregulated 29. Kras mutations occur in many tumor cells. They can lead to accelerated cell proliferation and maintain 

the strong proliferation ability of tumor cells. Excessive proliferation of tumor cells leads to hypoxia in the tumor. Over 

time, EMT occurs in tumor tissues. The synergistic effect of Kras and YAP1 is mutually reinforcing 30. In an in vitro study 

on HNSCC, MIR44352HG downregulation inhibited tumor cell proliferation, invasion, and EMT, and the mechanism may 

be related to the miR-383-5p/RBM3 axis. MIR4435-2HG has also been implicated in glycolysis and immune infiltration in 

cancer and been differentially expressed in tumors that are more amenable to immunotherapy 31 

PDHA1 is associated with FAM27E3. Its downregulation is linked to a poor prognosis of various tumors, and its 

downregulation can lead to increased IC50 32-35. LIPT1 is connected to AL513320.1, a predictor of patient outcome in liver 

cancer. Its expression corresponds with patient survival in bladder cancer 3. FAM27E3, AC021321.1, or SLBP-DT has not 

been studies. Studies on AL513320.1 are also relatively few. In-depth research of the link between lncRNAs and tumors 

would provide insight into the clinical management. 

Model construction could help screen high-risk patients, judge the survival prognosis, and provide novel directions for 

diagnostic models in clinical and scientific research. Early detection, diagnosis, and treatment of HNSCC help prolong 

survival. Therefore, a novel, efficient, and accurate diagnostic model should be established to diagnose and treat patients 

with hypertension. In this study, we used many methods to assess our model. The results were derived from multiple 

platforms. The prediction accuracy is high, which may be considered as external validation 36. 

 

5. Conclusion 

Based on bioinformatics, we established a prognostic risk model to assess the outcomes of HNSCC and suggest relevant 

drugs to help clinicians formulate personalized treatment options. Cuproptosis-related lncRNAs could predict patient 

outcomes and help differentiate between hot and cold tumors, which might pave the way for novel therapeutic approaches 

that would significantly improve personalized treatment and outcomes. 
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