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Introduction
The accelerating aging of the global population has led to growing demand for Long-Term Care Insurance (LTCI),
making refined premium rate calibration a critical issue in actuarial research. The "Opinions on Further Improving the
Medical and Health Service System (2023)" propose establishing a long-term care insurance system and actively
developing commercial health insurance as a supplement. The "Opinions on Strengthening Care Services for Severely
Disabled Persons (2025)" require including eligible severely disabled individuals in LTCI coverage and exploring the
inclusion of intelligent services and supportive devices in payment scope.
Activities of Daily Living (ADL) serve as a core indicator for measuring long-term care needs, and their assessment
results directly impact the fairness and sustainability of premium design. Zhang and Tang (2020) used ADL to define care
states in LTCI pricing research. Wang and Wang (2018) employed logit models to determine the significance of
independent variables on individual health status. Traditional actuarial methods primarily rely on linear models such as
logistic regression, which struggle to capture nonlinear relationships and interaction effects between ADL and influencing
factors, potentially leading to pricing errors and efficiency losses.
In recent years, machine learning techniques have offered new solutions to these challenges. Qiu et al. (2020) used
XGBoost to identify factors influencing long-term care status, ranked in descending order: age, health insurance status,
cohabitation with spouse, gender, etc. Compared to linear models, ensemble methods (e.g., XGBoost, Random Forest) can
automatically capture nonlinear patterns and high-order interactions, demonstrating significant advantages in prediction
tasks. Cheng et al. (2024) applied a PSO-based XGBoost-Logistic combination model to analyze factors affecting health
status. However, existing studies lack systematic comparisons of machine learning models in multiclass ADL prediction,
and their applicability in LTCI actuarial contexts remains insufficiently empirically validated.
Therefore, this study utilizes four waves of data (2015–2020) from the China Health and Retirement Longitudinal Study
(CHARLS) to compare the performance of various machine learning methods in multiclass ADL prediction, evaluating
the strengths and weaknesses of these approaches. Through rigorous empirical analysis, this research aims to provide
data-driven decision-making support for actuarial practices in long-term care insurance.
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Abstract:With the accelerating aging of the global population, the precise pricing of Long-Term Care Insurance (LTCI)
urgently requires accurate assessment of an individual's Activities of Daily Living (ADL). Traditional actuarial methods
relying on linear models struggle to capture complex nonlinear relationships. To address this issue, this study systematically
compares the performance of three typical machine learning models—Logistic Regression, XGBoost, and Random Forest—
in multiclass prediction of ADL, exploring their feasibility for insurance premium rate calibration.The research is based on
four waves of cross-sectional data (2015–2020) from the China Health and Retirement Longitudinal Study (CHARLS). After
rigorous data cleaning (final valid sample: 58,790 entries) and an 8:1:1 split into training/validation/test sets, 12 independent
variables—including age, mental health score, household size, etc.—were selected to construct the models.
Research methods included model construction, hyperparameter tuning, feature importance analysis (based on absolute
coefficient values, weighted gain, and mean decrease in impurity), and feature quantity optimization. The results indicate:(1)
The XGBoost model demonstrated the best generalization capability (test set accuracy: 0.7997), significantly outperforming
the severely overfitted Random Forest (test set accuracy: 0.7606) and the weakest-performing Logistic Regression (test set
accuracy < 0.6);(2) Feature importance analysis consistently identified age as the most critical predictor, with mental health
score and self-rated health (particularly significant in XGBoost) also having substantial influence;(3) After feature
optimization, XGBoost achieved optimal performance and strong robustness with seven core features (including age, mental
health, and self-rated health), while Logistic Regression and Random Forest required fewer and more features, respectively,
with inferior results.Accordingly, this study recommends prioritizing the XGBoost model for ADL risk assessment and
premium rate calibration in LTCI actuarial practice. Its excellent predictive accuracy, generalization ability, and effective
identification of key risk factors (age, mental health, self-rated health) can provide reliable data-driven support for
developing fairer and more accurate insurance products.

Keywords: Long-Term Care Insurance; Activities of Daily Living (ADL); Machine Learning; Logistic Regression;
XGBoost; Random Forest



8

Data and Variables​
Data and Variable Selection​
This study expands the age standard for participants in long-term care insurance to 40 years and above. The research data
are derived from cross-sectional surveys conducted in 2015, 2016, 2018, and 2020 by the China Health and Retirement
Longitudinal Study (CHARLS). Twelve independent variables were selected: age, mental health score (30-point scale,
higher scores indicate worse mental health), household size, BMI, self-rated health, residence location, alcohol
consumption history, smoking history, exercise habits, gender, health insurance status, and chronic disease history. The
target variable is multiclass ADL status.
Data Cleaning​
The original data were rigorously screened to form the study sample: 21,038 cases in 2015, 59 cases in 2016, 19,816 cases
in 2018, and 19,395 cases in 2020. Data cleaning was performed according to the following criteria: all rows with missing
values in the dependent variable column "ADL (difficulty with 6 items)" were deleted; samples with ADL values in the
range of 4–6 were merged into category 4; numerical variables were filled with median values, and non-numerical
variables were filled with mode values. The final dataset consisted of 58,790 valid samples.Categorical data were
transformed as shown in Table 1.
Assignment 0 1
Gender female male
Place of abode city village
Do exercise no yes
Have chronic diseases no yes
Drunk alcohol no yes
Smoke no yes yes
Have medical insurance no yes

Table 1
Additionally, the original data were randomly split into training, validation, and test sets in an 8:1:1 ratio. The validation
set was used multiple times to adjust model hyperparameters and prevent severe overfitting on the training set. The test set
was used only once to evaluate the final model's generalization performance. The final sets included: training set (47,016
samples), validation set (5,877 samples), and test set (5,877 samples).
The significant discrepancy in the 2016 sample size was noted and investigated. This anomaly is attributed to the specific
sampling framework or data release version of the CHARLS 2016 wave, which have constituted a targeted follow-up. To
ensure the robustness and generalizability of our findings, a sensitivity analysis was conducted. The models (XGBoost,
Random Forest, Logistic Regression) were re-trained and evaluated on a dataset excluding the 2016 wave. The results
showed negligible changes in key performance metrics. This confirms that the core conclusions of our study are not
sensitive to the inclusion of the 2016 data, thereby validating the integrity of the analytical results.
Model Construction​ ​
Introduction to Model Methods​
Multinomial Logistic Regression​

Multinomial logistic regression, as a multiclass extension of logistic regression, employs the Softmax function to
map linear predictions into categorical probability distributions (Bishop, 2006). Assuming samples belong to K discrete
categories, the model defines K-1 weight vectors w1​ ,…,wK−1​ to map input features x to the log-odds of each category:
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where W=[w1,…,wK−1]⊤ (Hastie et al., 2009). Parameter estimation typically employs gradient descent or Newton's
method, with asymptotic properties analyzable through generalized linear model (GLM) theory (McCullagh & Nelder,
1989). For hypothesis testing, methods such as the Wald test and likelihood ratio test are widely used for model
significance evaluation (Hosmer & Lemeshow, 2000).
XGBoost Algorithm​
XGBoost is an efficient ensemble learning algorithm based on Gradient Boosting Decision Trees (GBDT). Its core idea
involves iteratively constructing weak classifiers (decision trees) to progressively optimize the objective function and
reduce prediction errors, ultimately forming a strong learning model by integrating multiple weak classifiers.
Core Principles and Technical Innovations:​ ​

The XGBoost objective function consists of two parts: a training error term and a regularization term. The training
error term typically employs a squared loss function or other differentiable functions, while the regularization term
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controls model complexity by limiting the number of leaf nodes (T) and the L2 norm of leaf weights, thereby suppressing
overfitting.
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During iteration, XGBoost uses a second-order Taylor expansion to approximate the objective function, utilizing
both first-order (gradient) and second-order (Hessian matrix) information to optimize split node selection, significantly
improving computational efficiency. Specifically, each newly added decision tree in an iteration splits by minimizing the
following objective function:

Obj(t)=
i=1

n
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where ft(xi) represents the prediction of the t-th tree, and l(⋅ ) is the loss function. Through a greedy algorithm that
traverses all possible feature split points, XGBoost selects the splitting scheme that maximizes the gain in the objective
function.
Random Forest​ ​
​ ​ Definition and Core Idea:​ ​
Random Forest is a supervised learning algorithm based on an ensemble learning framework. It essentially enhances
model generalization by constructing multiple decision trees and employing an integration strategy (majority voting for
classification tasks, mean synthesis for regression tasks). The core idea originates from the Bagging (Bootstrap
Aggregating) concept in ensemble learning, introducing dual randomness mechanisms (data sampling randomness and
feature selection randomness) to enhance model diversity and reduce overfitting risks of single decision trees.
Algorithm Process and Key Mechanisms:​ ​
The construction of a Random Forest involves the following key steps:
Bootstrap Sampling​ ​ : Randomly sample N samples with replacement from the original training set T to generate
subset Dk ; repeat K times to form K independent training subsets. This process ensures that each decision tree is trained
on approximately 63.2% of the original samples, with the remaining samples serving as Out-of-Bag (OOB) data for model
validation.
Random Feature Selection​ ​ : At each decision tree node split, randomly select m candidate features from all M
features (where m << M), and choose the optimal splitting feature based on criteria such as information gain or Gini index.
For classification tasks, m is typically set to M , while for regression tasks, it is set to M/3.
​ ​ Decision Tree Construction and Integration​ ​ : Each decision tree grows to maximum depth on its subset and
random feature subset without pruning. The final prediction integrates the outputs of all decision trees: majority voting for
classification tasks and mean calculation for regression tasks.
Dual Randomness Mechanism:​ ​
​ ​ Data Randomness​ ​ : Bootstrap sampling breaks the original data distribution, reducing reliance on specific
samples and enhancing model robustness to noise. OOB data can serve as an unbiased validation set to estimate model
generalization error.
​ ​ Feature Randomness​ ​ : Limiting the feature candidate set during node splitting forces decision trees to explore
different feature combination paths, increasing inter-tree diversity. Research shows that feature randomness can reduce
the upper bound of generalization error in Random Forests compared to traditional decision trees by O( logM)​ .
Variable Importance Measures and Direction Interpretation​ ​
Logistic regression, as a representative linear model, measures importance based on the absolute values of model
coefficients. In multiclass tasks, the code sums the absolute values of coefficients for each feature across all categories to
obtain a comprehensive importance metric. The advantage of this method is that the sign of coefficients directly reflects
the direction of a feature's influence on the target variable: a positive coefficient indicates that an increase in the feature
value raises the risk of ADL impairment, while a negative coefficient indicates the opposite.Tree models such as
XGBoost and Random Forest employ more dynamic importance evaluation methods. XGBoost uses weighted gain (Gain)
as an importance criterion,统计 ing the average information gain brought by a feature across all decision tree splits.
Random Forest uses Mean Decrease in Impurity (MDI), calculating the total reduction in Gini index during feature splits.
Both methods can automatically capture interaction effects and nonlinear relationships between features. Additionally,
both methods use Partial Dependence Plots (PDP) to approximate the positive or negative influence of each feature on
ADL by altering feature values and observing the monotonic trend in model output probabilities.
Empirical Analysis​ ​
The three methods described above were applied to analyze the extent of each factor's influence on ADL, followed by a
comparative analysis.
Model Performance Comparison​ ​
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Comparison of Accuracy Rates of the Three Model

Methods
After evaluating the influence weights of various factors on ADL using the three methods, their model performances were
further compared, as shown in Figure 1. Random Forest achieved a training set accuracy of 0.9576, but its test set
accuracy plummeted to 0.7606, with a training-test gap of 0.1970, indicating overfitting. This phenomenon can be
explained by the fact that Random Forest approximates the local structure of training samples through the integration of
numerous decision trees, easily mistaking noise for valid signals, leading to increased generalization error.
In contrast, XGBoost achieved a training set accuracy of 0.8050 and a test set accuracy of 0.7997, with a mere difference
of 0.0053, demonstrating stable generalization capability. Its advantages stem from two main aspects: first, the gradient
boosting framework reduces bias through residual approximation during iteration; second, built-in regularization terms
and learning rate (0.3) jointly suppress excessive tree complexity.
Logistic regression achieved accuracy rates below 0.60 on both datasets, showing significant underfitting. This result
validates our hypothesis: when complex nonlinear relationships exist between prediction targets and explanatory variables,
the expressive power of linear models is evidently insufficient. Particularly in ADL prediction, an individual's daily living
ability is often influenced by interactions among multiple factors, which simple linear combinations struggle to fully
capture.
Feature Importance Analysis​ ​
Logistic Regression: Influence Degree of Independent Variables on ADL

XGBoost: Influence Degree of Independent Variables on ADL
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Random Forest: Influence Degree of Independent Variables on ADL

Figures 2-4 display the differences and consistencies in feature importance rankings across the three models. Both logistic
regression and Random Forest identified age as the primary variable, while XGBoost also classified age as a relatively
important variable. Among them, Random Forest assigned the highest importance weight (0.3017) to age, consistent with
existing geriatric evidence that age-related physiological decline has a continuous and irreversible negative effect on ADL.
Mental health indicators maintained high rankings across models, but their weights varied due to algorithmic mechanisms:
0.2274 for Random Forest, 1.0940 for standardized coefficients in logistic regression, and 0.1137 for XGBoost. This
discrepancy can be attributed to algorithmic handling of continuous variables: Random Forest captures potential nonlinear
relationships through recursive splitting; logistic regression restricts mapping to linearity; XGBoost falls between the two,
resulting in gradient variations in sensitivity to the same variable.
XGBoost further highlighted the importance of self-rated health (0.2555), with its weight surpassing that of age. This
result suggests that subjective health evaluations may integrate multiple types of information—physiological,
psychological, and environmental—making them more reflective of true ADL levels than single objective indicators, and
should be given equal attention in clinical assessments.
Feature Quantity Optimization​ ​
Model Performance of Logistic Regression under Different Feature Quantities
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Model Performance of XGBoost under Different Feature Quantities

Model Performance of Random Forest under Different Feature Quantities

Figures 5-7 show the performance response curves of the three models under varying feature subsets. Logistic regression
achieved the highest test accuracy of 0.5896 with only four features. Stepwise regression results indicated that four
indicators—age, self-rated health, mental health, and exercise habits—provided effective information within the linear
framework, while additional features acted as noise, weakening generalization performance.
Random Forest reached a peak test set accuracy of 0.7594 with 12 features; thereafter, training set accuracy continued to
rise to approximately 0.90, while test set performance stagnated, indicating that increased model complexity came with
overfitting risks. The mechanism lies in decision trees gaining more splitting paths as feature dimensions expand, leading
to overfitting of training samples.
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XGBoost performed optimally on the validation set with seven features and exhibited small fluctuations within the 5-8
feature range, demonstrating robustness to changes in feature scale. Based on cross-validation results, the optimal subset
consisted of age, mental health, self-rated health, exercise habits, chronic disease history, gender, and residence location.
Analysis of Results after Feature Optimization​ ​
​ ​ Model Selection​ ​
Comparison of Accuracy Rates of the Two Model Methods

After variable screening, Random Forest still selected the top 12 important features, logistic regression selected the top 4
important features, and XGBoost selected the top 7 important features. After screening, the training and test set evaluation
accuracy rates only changed slightly. Similar to the above analysis, XGBoost is considered superior to the other two
models for classified premium rate calibration in long-term care insurance in terms of prediction accuracy, number of
selected variables, and robustness.
Analysis of Output Results from the Selected Model​ ​
The results output using the XGBoost model are shown in the table below:

Feature Name significance Influence direction

Self-rated health 0.3297 negative

Do exercise 0.1845 positive

Mental health (30 points, the higher the score, the worse) 0.1560 positive

Age 0.1151 positive

Have chronic diseases 0.1139 positive

Gender 0.0562 negative

Place of abode 0.0446 positive

Table 2
Based on the model results, variables can be divided into two categories: core variables and auxiliary variables. The
former includes self-rated health, exercise status, mental health score (0-30, higher scores indicate worse condition), age,
and chronic disease history; the latter only includes gender and residence location. Among core variables, self-rated health
showed a negative correlation, meaning better self-reported health was associated with lower ADL limitations, consistent
with clinical experience. Mental health score, age, chronic diseases, and rural residence showed positive correlations,
indicating that worse mental state, older age, presence of chronic diseases, or residence in rural areas with relatively
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scarce medical resources were associated with increased risk of daily activity limitations, also consistent with
observational study conclusions.
Notably, the effect direction of exercise status was contrary to expectations, possibly due to insufficient characterization
of exercise "quality" and "quantity" in the questionnaire, where information bias may have obscured the true association.
Despite this limitation, the direction and strength of other variables aligned with previous evidence, indicating acceptable
validity of the model output.
Actuarial Application Example
To directly demonstrate the actuarial application promised in the title and introduction, a simplified premium calculation
illustrates the practical utility of the XGBoost model's probabilistic predictions. We define a basic long-term care
insurance product with a fixed benefit amount. The pure premium for a hypothetical policyholder is calculated as the sum
of the probabilities of being in each ADL impairment state (predicted by the model) multiplied by the corresponding
expected present value of the benefit. Comparing two individuals with different risk profiles—e.g., a 65-year-old with
good self-rated health versus an 80-year-old with chronic conditions—the model outputs distinct ADL state probabilities,
leading to significantly different risk-based premiums. This example provides a foundational framework for integrating
machine learning predictions into equitable LTCI rate-making.
Conclusion​
This study compared the performance of logistic regression, Random Forest, and XGBoost in multiclass ADL prediction,
with key findings as follows:
First, prediction accuracy: XGBoost achieved 79.97% accuracy on the test set, with only a 0.53 percentage point
difference between training and test errors, balancing fitting capability and generalization stability. Although Random
Forest reached 95.76% training accuracy, its test accuracy dropped to 76.06%, indicating significant overfitting; logistic
regression, limited by linear assumptions, achieved less than 60% accuracy, making it impractical for real-world
application.
Second, risk factors: All three algorithms consistently identified age, mental health score, and self-rated health as primary
variables. XGBoost assigned the highest weight to self-rated health (0.3297), suggesting that subjective health evaluations
provide independent signals for functional impairment. Chronic disease history, exercise status, and residence location
were also included, but the reverse estimate for exercise direction requires further verification with questionnaire details.
Third, variable scale: XGBoost maintained optimal performance with only seven features and exhibited minimal
fluctuations within the 5-8 variable range; logistic regression stopped improving with four variables, and Random Forest
required all 12 variables without showing advantages. Thus, XGBoost maintains precision and computational efficiency
while streamlining inputs.
In summary, this study provides a systematic empirical comparison of machine learning methods for enhancing ADL
assessment in actuarial science. The primary conclusion is that the XGBoost model is the most suitable tool for this task,
balancing high predictive accuracy with robust generalization. Beyond model performance, the key contribution lies in
translating these predictions into a tangible actuarial application. This bridges a critical gap between predictive modeling
and practical insurance pricing. For insurers, adopting such data-driven approaches can lead to more accurate risk
classification and fairer premiums. For policymakers, it underscores the potential of advanced analytics in sustaining
long-term care systems.
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